Team IGG : Computer Graphics and Geometry

Main Page

From Team IGG : Computer Graphics and Geometry
Revision as of 10:07, 9 June 2020 by Bechmann (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Geometry is the core of the IGG group (Computer Graphics and Geometry) activity as in other national and international computer graphics research groups. Within IGG, all researchers share the same vision of object representation. This vision separates the topological representation, or more generally the combinatorial aspects, from the embedding representation defining the geometry. This vision is the source of originality and strength of the research whithin the group.

Research, within the group, explore geometry and its involvement in shape modeling with adaptive combinatorial models, multiresolution, embedded with subdivision surfaces. Tactics for formal specification, resolution of geometrical constraint systems and geometry proofs are also developped. It leads to new problems for rendering and interaction in virtual environments and its applications reside in fields such as computer-assisted teaching, medical simulation, or digitization of heritage.

The acquisition techniques of the shape, appearance and movement have significantly increased the quality and resolution of models. But the race to the realism requires visual richness ever more, we are looking through adequate levels of detail for the shape, a sophisticated background for appearance and transposition of movements acquired on a reference model.

The IGG group aims to define efficient geometric models, taking into account a wide range of data (constraints, medical imaging, digitization, motion capture), to conceive and reproduce the shape, appearance and movement of 3D objects for visualisation, simulation and interaction in virtual environments. These goals are articulated around three complementary themes :

The Computer Graphics Group is structured in three themes:

Keywords : computer science, shape modeling, proofs and specifications, virtual reality, rendering