
Research internship Master 2

Representation and storage of very large meshes for out-of-core
interactive visualization on GPU

Location: Icube laboratory of the University of Strasbourg – Computer graphics and
geometry group.
Supervision: Jonathan Sarton (sarton@unistra.fr), associate professor
Keywords: Meshes, partitioning, multi-resolution, out-of-core, visualization, GPU

Context and motivations:
Interactive visualization of data sets represented as meshes is an essential tool very
commonly used in many scientific fields. In particular, meshes composed of triangles,
very commonly used for the geometric representation of 3D surface models, or
tetrahedral or hexahedral meshes, structured or unstructured, used for the simulation
of physical phenomena, can induce complex structures that create data sets that are
difficult to manipulate in interactive time due to their large size (see example Figure
1.).
GPUs are good targets for interactive visualization algorithms because of their
computing power. However, their limited physical memory capacity is an issue when
handling very large datasets.
We propose to address this problem by focusing on the development of an out-of-core
approach capable of interactively accessing the entire mesh object, regardless of the
geometry of its cells, with a memory representation greater than the physical memory
capacity of the machine used for its manipulation.

Figure 1: Large mesh from a 0.25 mm numerisation of a
5m statue of David. The Digital Michelangelo Project

Figure 2: GPU virtual addressing
structure: multi-resolution page
table [1].

mailto:sarton@unistra.fr

Objectives of the internship:
Using an efficient data structure (illustrated in Figure 2.) for virtual addressing of very
large regular 3D grids on GPUs[1], the objective of this internship is to focus on an
extension for different types of surface or volume mesh.

In order to manipulate these very large meshes for interactive visualization on GPUs,
we will focus on three points in this internship:
1. The decomposition of the mesh domain by a "brick" partititioning. This

partitioning must consider both the spatial consistency of the mesh object and
the consistency of data caching on the GPU.

2. The design of a multi-resolution representation, thus reducing the amount of
data to be addressed by adapting the level of detail in a multi-resolution
visualization algorithm.

3. The efficient storage of the selected representation (in 1. and 2.). This storage
must be performed at different levels: mass storage on disk and an efficient
caching system on the GPU.

These three points are common in a multi-resolution GPU visualization context
including a paging system [2,3]. The aim here is to propose a generic method capable
of manipulating different types of 2D or 3D meshes, regardless of the geometry of their
cells (triangles, tetrahedrons, hexahedrons, etc.) and their structure (regular,
structured, unstructured).

Candidate profile:
• Master 2 or computer engineering school student.
• An interest in 3D, geometry, topology, parallel computing and more generally

mathematics and computer science is required.
• The trainee must be comfortable in C++ programming and a knowledge of GPU

programming with CUDA would be a plus.

Candidates are invited to send their application letter and updated CV to Jonathan
Sarton (sarton@unistra.fr). We encourage you to contact us by email with any
questions or to discuss the subject further.

Références bibliographiques :
[1] Sarton, J., Courilleau, N., Remion, Y., Lucas, L.: Interactive Visualization and On-Demand
Processing of Large Volume Data: A Fully GPU-Based Out-Of-Core Approach. IEEE Transactions
on Visualization and Computer Graphics pp. 1–1 (2019)
https://doi.org/10.1109/TVCG.2019.2912752
[2] Gobbetti, Enrico, Dave Kasik, et Sung-eui Yoon. « Technical Strategies for Massive Model
Visualization », 2008, 11.
[3] Du, Zhiyan, et Yi-Jen Chiang. « Out-of-Core Simplification and Crack-Free LOD Volume
Rendering for Irregular Grids ». Computer Graphics Forum 29, no 3 (2010): 873-82.
https://doi.org/10.1111/j.1467-8659.2009.01705.x.

https://doi.org/10.1109/TVCG.2019.2912752
https://doi.org/10.1111/j.1467-8659.2009.01705.x

