Team IGG : Computer Graphics and Geometry

Difference between revisions of "Projects:IHU"

From Team IGG : Computer Graphics and Geometry
Jump to navigation Jump to search
Line 1: Line 1:
 
{{PAGE_Begin}}
 
{{PAGE_Begin}}
  
*'''3D-Surg: Surgery in 3D''' : The IGG team (D. Bechmann, A. Capobianco, T. Blandet) participates in '''BPI 3D-Surg project: Surgery in 3D''' from 2015 to 2019, driven by Luc Soler. Task 3.4.1- New 3D interaction models contactless (financing of a PhD student) and Task 3.4.2- Optimization and prototyping for real-time interaction (financing of an engineer over 2 years). IGG budget for around 262k€.
+
*'''3D-Surg''' (Surgery in 3D): The IGG team (D. Bechmann, A. Capobianco, T. Blandet) participates in '''BPI 3D-Surg project: Surgery in 3D''' from 2015 to 2019, driven by Luc Soler. Task 3.4.1- New 3D interaction models contactless (financing of a PhD student) and Task 3.4.2- Optimization and prototyping for real-time interaction (financing of an engineer over 2 years). IGG budget for around 262k€.
  
*'''HAYSTACK - Simulation and planning of percutaneous procedures for liver tumor ablation''': IGG team (C. Essert) participates to project '''Haystack''' 2012-2015, PI Stéphane Cotin (EPI Inria Shacra), co-PI Caroline Essert. Budget 200 k€. This project aims at developing a biomechanical model of needle insertion in abdominal soft tissue, and the elaboration of a new automatic needle trajectory planning method taking into account a prediction of the deformation of the needle and organs in order to anticipate them. The applications are percutaneous thermal ablations of abdominal tumours.
+
*'''HAYSTACK''' (Simulation and planning of percutaneous procedures for liver tumor ablation): IGG team (C. Essert) participates to project '''Haystack''' 2012-2015, PI Stéphane Cotin (EPI Inria Shacra), co-PI Caroline Essert. Budget 200 k€. This project aims at developing a biomechanical model of needle insertion in abdominal soft tissue, and the elaboration of a new automatic needle trajectory planning method taking into account a prediction of the deformation of the needle and organs in order to anticipate them. The applications are percutaneous thermal ablations of abdominal tumours.
  
 
{{PAGE_End}}
 
{{PAGE_End}}
 
[[fr:Projets:IHU]]
 
[[fr:Projets:IHU]]

Revision as of 16:56, 21 March 2016

  • 3D-Surg (Surgery in 3D): The IGG team (D. Bechmann, A. Capobianco, T. Blandet) participates in BPI 3D-Surg project: Surgery in 3D from 2015 to 2019, driven by Luc Soler. Task 3.4.1- New 3D interaction models contactless (financing of a PhD student) and Task 3.4.2- Optimization and prototyping for real-time interaction (financing of an engineer over 2 years). IGG budget for around 262k€.
  • HAYSTACK (Simulation and planning of percutaneous procedures for liver tumor ablation): IGG team (C. Essert) participates to project Haystack 2012-2015, PI Stéphane Cotin (EPI Inria Shacra), co-PI Caroline Essert. Budget 200 k€. This project aims at developing a biomechanical model of needle insertion in abdominal soft tissue, and the elaboration of a new automatic needle trajectory planning method taking into account a prediction of the deformation of the needle and organs in order to anticipate them. The applications are percutaneous thermal ablations of abdominal tumours.