Team IGG : Computer Graphics and Geometry

Difference between revisions of "Specifications, constraints and Proofs"

From Team IGG : Computer Graphics and Geometry
Jump to navigation Jump to search
Line 42: Line 42:
 
To this end, we put into play some approaches coming from declarative modeling and geometric constraint solving,  to compute automatically optimal trajectories for rigid and straight surgical tools. The comutation of the trajectory is performed in several steps. First, the expertise of the surgeon on a given type of intervention is transcribed under the form of mathematical equations (equalities, cost functions). Then those equations are formalized into geometric constraints, written under the form of terms combining geometric and arithmetic operators and the data coming from the medical images (MRI, CT). A first computation solves the so-called "strict" geometric constraints (boolean constraints) to provide the space of possible solutions. Finally a second computation solves the so-called "soft" geometric constraints called (numerical constraints) thanks to a numerical optimization, to provide the optimal solution. [[Image:Caro zonesoptimisationdec2006 detoure.jpg|right|thumb|150px]]
 
To this end, we put into play some approaches coming from declarative modeling and geometric constraint solving,  to compute automatically optimal trajectories for rigid and straight surgical tools. The comutation of the trajectory is performed in several steps. First, the expertise of the surgeon on a given type of intervention is transcribed under the form of mathematical equations (equalities, cost functions). Then those equations are formalized into geometric constraints, written under the form of terms combining geometric and arithmetic operators and the data coming from the medical images (MRI, CT). A first computation solves the so-called "strict" geometric constraints (boolean constraints) to provide the space of possible solutions. Finally a second computation solves the so-called "soft" geometric constraints called (numerical constraints) thanks to a numerical optimization, to provide the optimal solution. [[Image:Caro zonesoptimisationdec2006 detoure.jpg|right|thumb|150px]]
  
Nous avons testé nos approches sur 2 types d'interventions : l'ablation de tumeurs hépatiques par radiofréquence (hyperthermie) en collaboration avec le Pr. Gangi du service de radiologie interventionnelle de l'Hôpital Civil de Strasbourg, et l'implantation d'électrodes de stimulation cérébrale profonde en collaboration avec le Dr. Haegelen du service de neurochirurgie du CHU de Rennes Pontchaillou.
+
We tested our approaches on 2 types of interventions : the ablation of hepatic tumors by radiofrequency (hyperthermia) in collaboration with Pr. Gangi from the service of radiology of the Hôpital Civil of Strasbourg, and the implantation of electrodes of deep brain stimulation in collaboration with Dr. Haegelen from the service of neurosurgery of Renn's University hospital Pontchaillou.
  
Le travail de thèse de Claire Baegert a porté sur ces travaux [http://lsiit-cnrs.unistra.fr/Publications/2009/Bae09/]. De nombreuses publications ont porté sur ces thèmes, concernant la radiofréquence [http://lsiit-cnrs.unistra.fr/Publications/2009/EBS09/][http://lsiit-cnrs.unistra.fr/Publications/2007/BESSG07/][http://lsiit-cnrs.unistra.fr/Publications/2007/BESS07/][http://lsiit-cnrs.unistra.fr/Publications/2007/BESS07a/][http://lsiit-cnrs.unistra.fr/Publications/2007/BESS07b/] et la stimulation cérébrale profonde [http://lsiit-cnrs.unistra.fr/Publications/2010/EHJ10/]. Ces travaux ont également donné lieu à une collaboration avec le DKFZ de Heidelberg sur l'accélération des calculs d'obstacles aux trajectoires par GPU [http://lsiit-cnrs.unistra.fr/Publications/2010/ESFRSEBMM10/][http://lsiit-cnrs.unistra.fr/Publications/2011/SESREBFFYMM11/].
+
The PhD thesis of Claire Baegert dealt with this topic [http://lsiit-cnrs.unistra.fr/Publications/2009/Bae09/]. Various publications were published regarding radiofrequency [http://lsiit-cnrs.unistra.fr/Publications/2009/EBS09/][http://lsiit-cnrs.unistra.fr/Publications/2007/BESSG07/][http://lsiit-cnrs.unistra.fr/Publications/2007/BESS07/][http://lsiit-cnrs.unistra.fr/Publications/2007/BESS07a/][http://lsiit-cnrs.unistra.fr/Publications/2007/BESS07b/] and deep brain stimulation [http://lsiit-cnrs.unistra.fr/Publications/2010/EHJ10/]. These works also leaded to a collaboration with DKFZ Heidelberg on the acceleration of occlusions solving thanks to GPU [http://lsiit-cnrs.unistra.fr/Publications/2010/ESFRSEBMM10/][http://lsiit-cnrs.unistra.fr/Publications/2011/SESREBFFYMM11/].
  
Ces travaux ont donné lieu au projet ANR blanc '''[http://www.anr-acoustic.org/ ACouStiC]''', qui a démarré en janvier 2011 pour une durée de 4 ans, et dont IGG est partenaire. Ce thème de recherche s'insère également dans le cadre de l'IHU de Strasbourg "Institut de Chirugie Mini Invasive Guidée par l'Image" ou Mix-Surg.
+
These works gave rise to the ANR project '''[http://www.anr-acoustic.org/ ACouStiC]''', which started in january 2011 for 4 years, and in which IGG team is a partner. This research topic is part of the IHU of Strasbourg.
  
 
== Perspectives ==
 
== Perspectives ==

Revision as of 12:45, 4 April 2011


Presentation

Context and goals

Permanents staff

Other participants

Associate researcher : Gabriel Braun (MC) associate since 2009

Post-doctoral : Christophe Brun (ATER), Simon E.B. Thierry (ATER)

PhD students : Rémi Imbach

Former PhD students : Claire Baegert, Christophe Brun, Simon E. B. Thierry.


Outcome

Theorem proving

Specification, proofs of algorithms and implementation

Specification and constraint solving

Formalisation and planning of surgical interventions

HD snap final 11104.jpg

In these works, we propose an original approach to assist automatically the planning of a position of a surgical tool. Our method allows for elaborating an optimal strategy of intervention, specific to the patient and to the type of intervention, thanks to an automatic computation which is based on the expertise of the field and the preoperative data.

To this end, we put into play some approaches coming from declarative modeling and geometric constraint solving, to compute automatically optimal trajectories for rigid and straight surgical tools. The comutation of the trajectory is performed in several steps. First, the expertise of the surgeon on a given type of intervention is transcribed under the form of mathematical equations (equalities, cost functions). Then those equations are formalized into geometric constraints, written under the form of terms combining geometric and arithmetic operators and the data coming from the medical images (MRI, CT). A first computation solves the so-called "strict" geometric constraints (boolean constraints) to provide the space of possible solutions. Finally a second computation solves the so-called "soft" geometric constraints called (numerical constraints) thanks to a numerical optimization, to provide the optimal solution.

Caro zonesoptimisationdec2006 detoure.jpg

We tested our approaches on 2 types of interventions : the ablation of hepatic tumors by radiofrequency (hyperthermia) in collaboration with Pr. Gangi from the service of radiology of the Hôpital Civil of Strasbourg, and the implantation of electrodes of deep brain stimulation in collaboration with Dr. Haegelen from the service of neurosurgery of Renn's University hospital Pontchaillou.

The PhD thesis of Claire Baegert dealt with this topic [1]. Various publications were published regarding radiofrequency [2][3][4][5][6] and deep brain stimulation [7]. These works also leaded to a collaboration with DKFZ Heidelberg on the acceleration of occlusions solving thanks to GPU [8][9].

These works gave rise to the ANR project ACouStiC, which started in january 2011 for 4 years, and in which IGG team is a partner. This research topic is part of the IHU of Strasbourg.

Perspectives

Concernant la planification d'opérations chirurgicales, dans le cadre entre autres du projet ANR blanc ACouStiC, nous allons entamer une extension du domaine des solutions possibles, en étudiant les trajectoires courbes et/ou multiples, ainsi que les trajectoires volumiques. Cela nous permettra d'étendre le champ des applications à des outils chirurgicaux déformables, insérés dans des tissus également déformables, ou encore à des outils multiples (par exemple la cryoablation de tumeurs du foie), ou enfin à des volumes d'accès par exemple pour la craniotomie dans le cadre d'exérèse de lésions cérébrales. Nous allons également travailler à la navigation contrainte dans l'espace des solutions, afin de restreindre la modification de la trajectoire proposée à un espace des solutions possibles et/ou raisonnables. Pour cela, le lien sera fait avec l'axe "Visualisation et interactions" et notamment le thème de recherche sur les interfaces à retour d'effort.