Team IGG : Computer Graphics and Geometry

Difference between revisions of "Video Gallery"

From Team IGG : Computer Graphics and Geometry
Jump to navigation Jump to search
m
Line 5: Line 5:
 
!
 
!
 
|-
 
|-
|<videoflash>16JthovAh5c</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=16JthovAh5c</youtube>
 
|Pareto front vs. weighted sum optimization method for automatic trajectory planning of Deep Brain Stimulation. Video of MICCAI 2016 paper #205.
 
|Pareto front vs. weighted sum optimization method for automatic trajectory planning of Deep Brain Stimulation. Video of MICCAI 2016 paper #205.
 
(N. Hamzé, 2016)
 
(N. Hamzé, 2016)
Line 15: Line 15:
 
!
 
!
 
|-
 
|-
|<videoflash>JG1hFJkmvtA</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=JG1hFJkmvtA</youtube>
 
|DBS-PILOT: automatic trajectory planning for Deep Brain Stimulation.
 
|DBS-PILOT: automatic trajectory planning for Deep Brain Stimulation.
 
(C. Essert, 2015)
 
(C. Essert, 2015)
Line 27: Line 27:
 
!
 
!
 
|-
 
|-
|<videoflash>uTN4TLZLShc</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=uTN4TLZLShc</youtube>
 
|Fluid-solid interaction's simulation - Projection of water on a cube
 
|Fluid-solid interaction's simulation - Projection of water on a cube
 
(O. Genevaux)
 
(O. Genevaux)
Line 38: Line 38:
 
!
 
!
 
|-
 
|-
|<videoflash>oW6DZ9PuxBw</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=oW6DZ9PuxBw</youtube>
 
|Simulation of fluid-solid interactions -  
 
|Simulation of fluid-solid interactions -  
 
(O. Genevaux)
 
(O. Genevaux)
Line 50: Line 50:
 
!
 
!
 
|-
 
|-
|<videoflash>JAh9NPxM0tE</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=JAh9NPxM0tE</youtube>
 
|Simulation of fluid-solid interactions - Rebound
 
|Simulation of fluid-solid interactions - Rebound
 
(O. Genevaux)
 
(O. Genevaux)
Line 62: Line 62:
 
!
 
!
 
|-
 
|-
|<videoflash>Is4eQDUJqG4</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=Is4eQDUJqG4</youtube>
 
|Simulation of fluid-solid interactions - Ball thrown in the water
 
|Simulation of fluid-solid interactions - Ball thrown in the water
 
(O. Genevaux)
 
(O. Genevaux)
Line 74: Line 74:
 
!
 
!
 
|-
 
|-
|<videoflash>58fa4mcYiIE</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=58fa4mcYiIE</youtube>
 
|Simulation of fluid-solid interactions - Ball bouncing in the water
 
|Simulation of fluid-solid interactions - Ball bouncing in the water
 
(O. Genevaux)
 
(O. Genevaux)
Line 86: Line 86:
 
!
 
!
 
|-
 
|-
|<videoflash>Moz9pOhV-E8</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=Moz9pOhV-E8</youtube>
 
|Physical animation - Animation of a tissue sliding over a ball
 
|Physical animation - Animation of a tissue sliding over a ball
 
(A. Habibi)
 
(A. Habibi)
Line 100: Line 100:
 
!
 
!
 
|-
 
|-
|<videoflash>3lrHuLu8oEw</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=3lrHuLu8oEw</youtube>
 
|Particle collision detection (T. Jund)
 
|Particle collision detection (T. Jund)
 
|-
 
|-
Line 109: Line 109:
 
!
 
!
 
|-
 
|-
|<videoflash>9uqAKIS1_Bk</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=9uqAKIS1_Bk</youtube>
 
|Particle collision detection (T. Jund)
 
|Particle collision detection (T. Jund)
 
|-
 
|-
Line 119: Line 119:
 
!
 
!
 
|-
 
|-
|<videoflash>M7rCYgylcO0</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=M7rCYgylcO0</youtube>
 
|Forecast mechanism for continuous collision detection in deformable environments (T. Jund)
 
|Forecast mechanism for continuous collision detection in deformable environments (T. Jund)
 
|-
 
|-
Line 131: Line 131:
 
!
 
!
 
|-
 
|-
|<videoflash>wNH0Sj5k17o</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=wNH0Sj5k17o</youtube>
 
|Geometric modelling of objects in a virtual reality environment (M. Veit)
 
|Geometric modelling of objects in a virtual reality environment (M. Veit)
 
|-
 
|-
Line 141: Line 141:
 
!
 
!
 
|-
 
|-
|<videoflash>Cn6FVt5fpd0</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=Cn6FVt5fpd0</youtube>
 
|DNA Project (J. Grosjean, J. Simonin)
 
|DNA Project (J. Grosjean, J. Simonin)
 
|-
 
|-
Line 151: Line 151:
 
!
 
!
 
|-
 
|-
|<videoflash>qdBHZhhKPhg</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=qdBHZhhKPhg</youtube>
 
| Bimanual interaction : object warping on the workbench (N. Meylander)
 
| Bimanual interaction : object warping on the workbench (N. Meylander)
 
|-
 
|-
Line 160: Line 160:
 
!
 
!
 
|-
 
|-
|<videoflash>Ishx_VttCAs</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=Ishx_VttCAs</youtube>
 
| Simulated touch-screen interaction for 3-D rotation task decomposition (M. Veit)
 
| Simulated touch-screen interaction for 3-D rotation task decomposition (M. Veit)
 
|-
 
|-
Line 170: Line 170:
 
!
 
!
 
|-
 
|-
|<videoflash>ngWEaU827Ig</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=ngWEaU827Ig</youtube>
 
| Object 3-D rotation using a direct-like interaction technique (M. Veit)
 
| Object 3-D rotation using a direct-like interaction technique (M. Veit)
 
|-
 
|-
Line 180: Line 180:
 
!
 
!
 
|-
 
|-
|<videoflash>Xs4gWEBXChs</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=Xs4gWEBXChs</youtube>
 
| Simulated touch-screen interaction for 3-D positioning : the height is handled appart from the others dimensions (M. Veit)
 
| Simulated touch-screen interaction for 3-D positioning : the height is handled appart from the others dimensions (M. Veit)
 
|-
 
|-
Line 190: Line 190:
 
!
 
!
 
|-
 
|-
|<videoflash>0YWKzL9HAzE</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=0YWKzL9HAzE</youtube>
 
| Simulated touch-screen interaction for 3-D positioning : the depth is handled appart from the others dimensions (M. Veit)
 
| Simulated touch-screen interaction for 3-D positioning : the depth is handled appart from the others dimensions (M. Veit)
 
|-
 
|-
Line 200: Line 200:
 
!
 
!
 
|-
 
|-
|<videoflash>8sUWRkQh0l0</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=8sUWRkQh0l0</youtube>
 
| Simulated touch-screen interaction for 3-D positionings in our semi-immersive virtual reality environment (M. Veit)
 
| Simulated touch-screen interaction for 3-D positionings in our semi-immersive virtual reality environment (M. Veit)
 
|-
 
|-
Line 209: Line 209:
 
!
 
!
 
|-
 
|-
|<videoflash>N8ET7b5cRI8</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=N8ET7b5cRI8</youtube>
 
| ''Cursor-On-Surface'' (CROS) : the user moves an interaction point on the surface of a 3-D object. This point can be used for several modelling operations such as sculpting or colouring. (M. Veit)
 
| ''Cursor-On-Surface'' (CROS) : the user moves an interaction point on the surface of a 3-D object. This point can be used for several modelling operations such as sculpting or colouring. (M. Veit)
 
|-
 
|-
Line 218: Line 218:
 
!
 
!
 
|-
 
|-
|<videoflash>rKgLzqO5xbo</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=rKgLzqO5xbo</youtube>
 
|3D constraints on the workbench (A. Fabre)
 
|3D constraints on the workbench (A. Fabre)
 
|-
 
|-
Line 228: Line 228:
 
!
 
!
 
|-
 
|-
|<videoflash>ZzCptdi4P5A</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=ZzCptdi4P5A</youtube>
 
| Ring Menu, Cube Menu (L. Sternberger, J. Grosjean)
 
| Ring Menu, Cube Menu (L. Sternberger, J. Grosjean)
 
|-
 
|-
Line 239: Line 239:
 
!
 
!
 
|-
 
|-
|<videoflash>3UNbLhJDbK8</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=3UNbLhJDbK8</youtube>
 
|GPU rendering of heighfields (L. Ammann)
 
|GPU rendering of heighfields (L. Ammann)
 
|-
 
|-
Line 249: Line 249:
 
!
 
!
 
|-
 
|-
|<videoflash>LD1jdORka18</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=LD1jdORka18</youtube>
 
|Interactive refraction on complex static  
 
|Interactive refraction on complex static  
 
geometry using spherical harmonics (O Génevaux, F Larue, JM Dischler)
 
geometry using spherical harmonics (O Génevaux, F Larue, JM Dischler)
Line 259: Line 259:
 
!
 
!
 
|-
 
|-
|<videoflash>5V_joHXJ_Pc</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=5V_joHXJ_Pc</youtube>
 
|Visualization of plasma simulation (M. Haefelé)
 
|Visualization of plasma simulation (M. Haefelé)
 
|-
 
|-
Line 270: Line 270:
 
!
 
!
 
|-
 
|-
|<videoflash>UtsNuoWx6Mw</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=UtsNuoWx6Mw</youtube>
 
| Fusion of 2 spheres  
 
| Fusion of 2 spheres  
 
|-
 
|-
Line 279: Line 279:
 
!
 
!
 
|-
 
|-
|<videoflash>16ULTAiQuH0</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=16ULTAiQuH0</youtube>
 
| Fusion of 2 objects  
 
| Fusion of 2 objects  
 
|-
 
|-
Line 288: Line 288:
 
!
 
!
 
|-
 
|-
|<videoflash>Nq9WK8dvLZE</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=Nq9WK8dvLZE</youtube>
 
| Modeling of an animation in 4D (N. Dubreuil)
 
| Modeling of an animation in 4D (N. Dubreuil)
 
|-
 
|-
Line 299: Line 299:
 
!
 
!
 
|-
 
|-
|<videoflash>k9SHFPpt-tI</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=k9SHFPpt-tI</youtube>
 
| France 3 Alsace news coverage
 
| France 3 Alsace news coverage
 
|-
 
|-
Line 309: Line 309:
 
!
 
!
 
|-
 
|-
|<videoflash>9MShj45eM94</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=9MShj45eM94</youtube>
 
| Presentation IGG 1.1
 
| Presentation IGG 1.1
 
|-
 
|-
Line 318: Line 318:
 
!
 
!
 
|-
 
|-
|<videoflash>5HzH0lKL2tQ</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=5HzH0lKL2tQ</youtube>
 
| Presentation IGG 1.2
 
| Presentation IGG 1.2
 
|-
 
|-
Line 327: Line 327:
 
!
 
!
 
|-
 
|-
|<videoflash>R4YD8s9-3K8</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=R4YD8s9-3K8</youtube>
 
| Presentation IGG 2.1
 
| Presentation IGG 2.1
 
|-
 
|-
Line 336: Line 336:
 
!
 
!
 
|-
 
|-
|<videoflash>eRNNGjFTCeU</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=eRNNGjFTCeU</youtube>
 
| Presentation IGG 2.2
 
| Presentation IGG 2.2
 
|-
 
|-
Line 345: Line 345:
 
!
 
!
 
|-
 
|-
|<videoflash>RZ3K0pwCSgw</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=RZ3K0pwCSgw</youtube>
 
| Presentation IGG 2.3
 
| Presentation IGG 2.3
 
|-
 
|-
Line 354: Line 354:
 
!
 
!
 
|-
 
|-
|<videoflash>iA0PSLIqo_I</videoflash>
+
|<youtube>https://www.youtube.com/watch?v=iA0PSLIqo_I</youtube>
 
| Presentation IGG 2.4
 
| Presentation IGG 2.4
 
|-
 
|-

Revision as of 13:12, 6 September 2019

Surgical planning based on constraint solving

Pareto front vs. weighted sum optimization method for automatic trajectory planning of Deep Brain Stimulation. Video of MICCAI 2016 paper #205.

(N. Hamzé, 2016)

DBS-PILOT: automatic trajectory planning for Deep Brain Stimulation.

(C. Essert, 2015)

Simulation

Fluid-solid interaction's simulation - Projection of water on a cube

(O. Genevaux)


Simulation of fluid-solid interactions -

(O. Genevaux)


Simulation of fluid-solid interactions - Rebound

(O. Genevaux)


Simulation of fluid-solid interactions - Ball thrown in the water

(O. Genevaux)


Simulation of fluid-solid interactions - Ball bouncing in the water

(O. Genevaux)


Physical animation - Animation of a tissue sliding over a ball

(A. Habibi)


Collision detection

Particle collision detection (T. Jund)
Particle collision detection (T. Jund)

Video of the international congress SPM 2009

Forecast mechanism for continuous collision detection in deformable environments (T. Jund)

Virtual Reality

Geometric modelling of objects in a virtual reality environment (M. Veit)


DNA Project (J. Grosjean, J. Simonin)


Bimanual interaction : object warping on the workbench (N. Meylander)
Simulated touch-screen interaction for 3-D rotation task decomposition (M. Veit)


Object 3-D rotation using a direct-like interaction technique (M. Veit)


Simulated touch-screen interaction for 3-D positioning : the height is handled appart from the others dimensions (M. Veit)


Simulated touch-screen interaction for 3-D positioning : the depth is handled appart from the others dimensions (M. Veit)


Simulated touch-screen interaction for 3-D positionings in our semi-immersive virtual reality environment (M. Veit)
Cursor-On-Surface (CROS) : the user moves an interaction point on the surface of a 3-D object. This point can be used for several modelling operations such as sculpting or colouring. (M. Veit)
3D constraints on the workbench (A. Fabre)


Ring Menu, Cube Menu (L. Sternberger, J. Grosjean)

GPU rendering & Simulation

GPU rendering of heighfields (L. Ammann)


Interactive refraction on complex static

geometry using spherical harmonics (O Génevaux, F Larue, JM Dischler)

Visualization of plasma simulation (M. Haefelé)

4D animation

Fusion of 2 spheres
Fusion of 2 objects
Modeling of an animation in 4D (N. Dubreuil)

Communication

France 3 Alsace news coverage


Presentation IGG 1.1
Presentation IGG 1.2
Presentation IGG 2.1
Presentation IGG 2.2
Presentation IGG 2.3
Presentation IGG 2.4